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Abstract

A method for generating finite-dimensional approximations to the solutions of optimal control prob-

lems is introduced. By employing a description of the dynamical system in terms of its attainable sets

in favor of using differentiM equations, the controls are completely eliminated from the system model.

Besides reducing the dimensionality of the discretized problem compared to state-of-the-art collocation

methods, this approach also alleviates the search for initial guesses from where standard gradient search

methods are able to converge. The mechanics of the new method are illustrated on a simple double

integrator problem. The performance of the new algorithm is demonstrated on a 1-D rocket ascent

problem ("Goddard Problem") in presence of a dynamic pressure constraint.

Introduction

The precise solution of an optimal control problem via Pontryagin's Minimum Principle involves the

numerical treatment of highly nonlinear multipoint boundary value problems (BVPs). The structure of

these BVPs depends on the sequence in which the optimal control switches between singular/nonsingular

and constrained/unconstrained arcs, and is not known to the anMyst in advance. Additionally, these

BVPs involve artificial costates that have little physical meaning, so that reasonable initial guesses for

gradient search methods may be hard to find.

For these reasons, rapid trajectory prototyping is usually attempted by applying direct optimization

techniques to some type of discretized problem formulation. This approach leads to the numerical task

of solving nonlinear programming problems. The performance of the optimization algorithm involved

and the precision of the obtained solutions depends strongly on the chosen problem discretization and

on the dimension of the associated parameter space.

The currently most successful approaches are based on collocation methods [1], [2], as implemented

in the OTIS program (Optimal Trajectories by Implicit Simulation) [3], [4]. The algorithm introduced

in the present paper is very similar in its structure to the OTIS approach. Itowever, the derivation

is very different and involves concepts such as the hodograph space and differential inclusions. The

advantage of the new approach lies in the fact that it is completely devoid of controls and, hence,

requires a lower-dimensional parameter space than the OTIS approach. Furthermore, the absence of

controls reduces the number of initial guesses required by nonlinear programming methods.

*Senior Project Engineer, Analytical Mechanics Associates, Inc., '77 Research Drive, Hampton, VA 23666, working

under contract at the Spacecraft Controls Branch, NASA-LARC, Member AIAA.
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Problem Formulation

in terms of Differential Equations

We consider optimal control problems of the following general form:

subject to the equations of motion

the boundary conditions

and the control constraints

min ¢(x(O),x(1)) (1)
_(PWC'[o,_]) r,,

_c(t) = f(x(t),u(t)) V t e [0, 1], (2)

g(z(t),u(t)) = o v t e [o,1], (4)

h(x(t), u(t)) _ o v t • [o, 1]. (5)

Here, t • R, x(t) • R n, and u(t) • R m are time, state vector and control vector, respectively. The

functions ¢ : R 2n ---, R, f : R '_+m ---, R n, tp : R 2n _ R _, s <_ 2n, arm g : R _+m -- R kg, h : R _+m ---,

¢(x(0), z(1))= 0, (3)



R kh are assumed to be sufficiently smooth w.r.t, their arguments of whatever order is required in this

paper. (PWC[0, 1]) m denotes the set of all piecewise continuous functions mapping the interval [0, 1]

into R "_ .

The Hodograph

For fixed states x, the hodograph S(x) is defined as the set of all possible state rates J: that can be

achieved by varying the controls within their allowed bounds. Given the state equations (2) and the

control constraints (4), (.5), we can write

S(x) = {_ • R'_I b: = f(x,u), u • ft(x)}, (6)

where fl(x) is the set of all admissible controls u • R m, i.e.

f_(x) = {u • R m Ig(x,u) = 0, h(x,u) _ 0}. (7)

In the formulation (7), the controls u • R m can be regarded as a mere instrument for parameterizing

the hodograph (6). In fact, the optimal state history and the optimal cost associated with problem (1) -

(5) are not affected if the control vector u • R m and the control constraints (4), (5) are replaced by

any other set of variables to parameterize the admissible state rates as long as the resulting hodograph

remains unchanged.
We now assume that there are smooth functions p : R 2n _ Rtp, q : R 2n ---, R lq, such that the

hodograph S(x) defined in (6), (7) can be rewritten as

S(x) = • I = O, <_0}. (S)

To guarantee the existence of such functions p and q, we may replace S(x) by its convex huH. This is
sometimes called "relaxing the problem". If the solution to the relaxed problem has its state rates always

operating in the domain of the original nonconvex hodograph, then obviously the problem relaxation

did not have any effect on the solution. In this case, the solutions to the relaxed and the unrelaxed

problem are the same. If the solution to the relaxed problem has state rates operating outside the

original nonconvex hodograph, then this indicates chattering control [5] and a solution to the unrelaxed

problem does not exist.
Hence, to avoid the problem of nonexistence of a solution to the original problem (1 i - (5), we may,

without loss of generality, assume that the hodograph defined in (6), (7) is convex.

The aim of the sections below is to exploit (8) to introduce a problem formulation that is completely

devoid of controls, employing only the information condensed in the hodograph. Using the concept

of differential inclusions [6], [7], the evolution of the dynamical system can be described completely in

terms of states and their sets of attainability.

Sets of Attainability

Given a starting time to, an initial state x(to) = Xo, and a final time tl, the set of attainability

K(to, Xo; tl) is defined to consist of all points x • R '_ to which the state vector x(t) can be steered at

time tl through an admissible control u(t)te[_0,_]. Here, an admissible control is any function of time

u(t) • PWC[O, 1] restricted to the subinterval [to, tl], that satisfies the control constraints (4), (5). The

dependence of the attainable set on the right-hand side of the state equations f, and on the control

constraints g, h, is suppressed in the nomenclature K(to, Xo, tl).

Now, let At be a small time step initiated at time to and let tl = to + At. Then, a first-order

approximation [((to, x0; tl) to the attainable set K(t0, x0; tl) can be given by

[((to, xo;t,)= {x • R'_[ x = x0+ At.S(xo)}. (9)

Here, we used the simplifying notation

{±t. S(x0)} := { • S(x0)}, (10)



and S denotes the hodograph defined in (8). The notion of first order approximation is understood in

the sense that for fixed Atm_x, there is a real number M(Atmax) > 0 such that for all 0 < At < At,_

each element of the attainable set K(to, Xo, tl) can be approximated to first order by some element in

/_'(to, Xo, tl). This means, for each element Xl E K(to, xo, tl) there is an element _'a E /_'(to, Xo, tl) such

that [[Xl - Z'l[[2 <: /tI. At 2.

A New Numerical Approach

Let 0 = to, tl,..,tN-l,tN = 1 be a user-chosen subdivision of the interval [0, 1]. For simplicity, let
the nodes be distributed equidistantly, i.e.

i

ti = _-_, i = O,..,N. (11)

A generalization to arbitrary subdivisions is straightforward. Then let Xo, xl, ..,xN E R '_ be approxi-
mations to the states at time to, .., IN, respectively, and define

x = [xolxlt..IXN]e tt (N+1)". (12)

Problem (1)- (4) can now be rewritten in the form

subject to the constraints

and

min O(XO, XN) (13)
XER(N+1)'n

q2(Xo, XN) = O (14)

gi+l E K(ti, xi, ti+l), i = 0,..,N- 1. (15)

By substituting the attainable set K(ti, xi, ti+l) by its first-order approximation A'(ti,xi, ti+l) as given

by (9), (15)leads to

x_+l _ {x _ R"Iz = z_ + A_. S(xi)}. (16)

Employing the assumption that the hodograph S(x) defined in (6) and (7) can be expressed in the

form (8), it is clear that (16), after approximating _:i by

_i _- Xi+l -- xi ' (17)

can be substituted equivalently by the conditions

p(_:i,x;)=O _ i=O, N- 1. (18)
q(xl,xi) <_ 0 J ""

In summary, it is proposed to obtain the approximate values of the optimal state vectors xi at

times ti, i = O,..,N, by solving the nonlinear parameter optimization problem (13) subject to the

constraints (14) and (18). The values of the state variables xi at the node points ti, i = 0,..,N

are the parameters that have to be found such that the performance index (13) is minimized. No

controls are involved explicitly. The minimizatioil is subject to the boundary conditions (14) and

the interior constraints (18). For every state xi that is picked at time ti, the set of attainability

K(ti,xi;t), i.e. the set of coordinates to which the state vector can be steered after time ti, keeps

ballooning as time progresses. The conditions (18) enforce that the state Xi+l lies within the (first-order

approximation to) the attainable set K(ti, xi; ti+l) (see figure l). Hence, conditions (18) represent a

numerical implementation of the differential inclusion concept.



Extension 1:

A Higher Order Approximation

A more precise discretization can be obtained if condition (16) is substituted by

x;+l _ {x _ R_ 1x = x_+ At. S(Z_)}, (19)

where

X'i "-- Xi Jr Xi+l (20)
2

In complete analogy to (18) this leads to

p(2i,:_i)=0 _ i=0, .,N- 1. (21)
q (:)i, 5:i) < 0 J

A derivation of the order of this approximation is not given in the present paper.

Extension 2:

Nonequidistant Subdivision

For practical applications it may be useful to place the nodes ti nonequidistantly rather than as

defined in (11). For instance, if preliminary results obtained by equidistant node placement suggest

rapid state transitions in some domain of the time interval, then it is advisable to rerun the problem
with the same number of nodes, placed more densely in the areas of rapid state transitions and more

scarcely in areas with sluggish state rates. Without increasing the number of parameters used to

represent the discretized problem, this can significantly improve the precision of the result.

Formally, nonequidistant node placement does not complicate the discretized problem formula-

tion (13), (14), (16).

Extension 3:

State Constraints

State equality or inequality constraints of the general form

v(x) = o, (22)
w(x) < o,

usually represent a significant complication of the optimal control problem (1) - (5). For the discretiza-

tion proposed in this paper, constraints (22) are virtually trivial. By enforcing pointwise satisfaction

of (22) we obtain the additional conditions

v(zi) = 0, "[
w(xi)<_0, f i=0,..,N. (23)

Then, the suboptimal solution to problem (1) - (5), and (22) is obtained by simply adding con-

straints (23) to the nonlinear programming problem of (13), (14), and (18). In contrast to optimal

control approaches based on the Minimum Principle [8], [5], [9], the user need not provide any guesses

of the optimal switching structure.

Extension 4:

Analytical Derivatives

The numerical approach proposed in the present paper does not require explicit integration of the

equations of motion. Instead, a number of equality and inequality constraints is imposed on any pair

of neighboring states. As a consequence, the partial derivatives of the cost gradients and the constraint

gradients, required by any Newton type method to solve the Kuhn-Tucker conditions associated with

problem (13), (14), (18), (23), can be calculated analytically as long as the functional dependencies of

5



_, ffl,p, p, q, v, w on their arguments are known. With this rather easy access to analytical partial

derivatives of the cost and constraint functions associated with the discretized optimization problem,

the expensive evaluation of partial derivatives through finite differences can be eliminated. It can also

be expected that analytical differentiation provides higher precision, which may be a deciding factor in

case of a badly conditioned problem.

Extension 5:

Explicit Time Dependence

In the problem formulation (1)- (5) and (22), no explicit time dependence of the describing functions

_, ff_, f, g, h, v, and w is assumed. This does not represent a serious restriction. Explicit dependence

of the right-hand side of the state equations f on time t, for example, can be transformed away by

introducing the additional state equation and initial condition

+= l, (24)
T(0) = 0,

thus providing a state carrying the value of the current time. Variable final time problems can be dealt

with by introducing the additional state T through

T=0 (25)

and multiplying the right-hand side f associated with all other states with T.
These techniques are very common and well known, and they can be applied to transform general

optimal control problems to problems of the form (1) - (5) and (22). However, for each additional

state introduced, the number of parameters in the discretized formulation (13), (14), (18), and (23),

increases by N + 1, where N is the user chosen number of discretization nodes. However, in this

discretized formulation it is not necessary to explicitly carry along conditions of the type (24) and

(25). Through analytical integration, conditions (24) can be eliminated completely, and, in case of

condition (25), the unknown constant of integration gives rise to a single scalar parameter that has

to be added to the optimization parameters (12). In general, to keep the number of parameters in

the nonlinear programming problem (13), (14), (18), and (23) small, it is advisable to customize the

numerical approach by using analytical integration whenever possible. The implications for the analysis

outlined in the sections above are rather straightforward and the numerical benefits may be worth the

extra effort.

Example 1:

Double Integrator Problem

As an academic example to demonstrate the general procedures required by the new approach, we

consider the following problem:
min -x(1) (26)

ucPWC[O,1]

subject to the equations of motion

the initial and final conditions

and the control constraints

= v, (27)
_)=u,

x(0) = 0, (28)
v(0)=0, v(1)=0,

-l_<u_< 1. (29)

The optimal control solution to this problem is of a bang-bang type. The associated state and control

time histories are given in figures 2, 3.



To apply the proposedalgorithm,we first choosean integerN and define N 4- 1 (equidistantly

placed) nodes
/

t_ = _, / = 0, ..,N. (30)

Then the values of the states [xi, vi] :r at the nodes ti, i = 0,..,N, are obtained from solving the

constrained parameter optimization problem

subject to the constraints

and

• }_._- v_ = 0
_-1 _< o

-_-1 _< 0

Here, 2i, vi, _i, v_, i = O, .., N- 1 are defined by

-xN (31)

with

VN = O,
(32)

i = O,..,N- 1. (33)

2 , a_ , (34)
_i = _ _i =2 _ At '

1

At = _, (35)

and give approximate values for states and state rates in between nodes. Conditions (32) represent the

initial/final conditions (28) in the discretized form, and conditions (33) replace the description, (27) and

(29), of the underlying dynamical system. For the derivation of conditions (33), the hodograph defined

in (6) and (7)

s(x, v)= = = }, (36)

a(x,_) = {_ e a I-1 < _ < 1}. (37)

is rewritten in the general form (8)

s(_,_) = {[_,_] e a _
I_- v = 0, 6 - 1 < o, -/_ - 1 < o, } (38)

Then the conditions k - v = 0,/J - 1 < 0, -7) - 1 _< 0 in (38) are, loosely speaking, evaluated in between

subsequent nodes to yield (33).

It is well known that the optimal solution to problem (26) - (29) is of a bang-bang nature with

u(t) = +1 for 0 < t < 0.5 and u(t) = -1 for 0.5 < t < 1 (see figures 2 and 3, or figures 4 and 5). From

the linearity of the state equations (27), it follows that the discretized solution, i.e. the solution to (31)-

(35), will match the optimal solution perfectly as long as the control associated with the optimal solution

is constant throughout each discretization interval. Noting that the optimal solution has a switching

point only at time t = 0.5 and is identically constant elsewhere, it is clear that the discretized solution

is identical to the optimal solution if and only if N is an even integer (odd number of nodes). This

observation is also confirmed by the numerical results (see figures 2 and 3 for odd numbers of nodes,

and figures 4 and 5 for even numbers of nodes). All numerical results were obtained by employing the

nonlinear programming code, NPSOL [10], to solve the nonlinear programming problem (31) - (33).

The generation of decent initial guesses for the parameters (xi, vi)_=0,..,N, required by NPSOL, was no
problem. Convergence was always achieved in no more than three iterations even if the initial guesses

were chosen many orders of magnitude off the respective optimal values.



Example 2:

1-D Rocket Ascent ("Goddard Problem")

As a nontrivial problem to demonstrate the performance of the new algorithm, we consider the

problem of maximizing the final altitude for a sounding rocket ascending vertically under the influence

of atmospheric drag and an inverse-square gravitational field. The states are radial distance r, velocity

v, and mass m. The thrust magnitude T is the only control and is subject to fixed bounds 0 _< T _< Tmax

(control constraints) and a dynamic pressure limit q <_ qmax (state constraint).
In nondimensional form the problem is given as follows:

rain - r(tf) (39)

subject to the equations of motion

T-D 1
_) _ (40)

m r 2

T
rh -

e

the control constraint

the boundary conditions
a) r(0)= 1

b) v(0) = 0
c) m(0)= 1

and the state inequa_ty constraint

T • [0, Tm_] (41)

d) r(t]) to be maximized

v(t:) free
f) m(t.:)= m/

(42)

/ 2 qmax

v- VPoe_--_-i:-__) <_ O. (43)

With dynamic pressure q and air density p given by

i
q = -_ pv 2 ,

P = POe f_(1-r),

respectively, it is clear that the "speed limit" (43) is equivalent to a dynamic pressure limit q- q,na_ <_ O.

The aerodynamic drag D is given by
D=qCDA.

The constants CD, A, po, _ denote drag coefficient, cross-sectional area, air density at ground level,

and exponential decay rate of air density with altitude, respectively. The constants c, Tma_, m/ used

in (40), (41), (42) denote the exhaust velocity, the maximum available thrust, and the final mass of

the vehicle (after all the fuel is burned), respectively. The nondimensional values used for numerical

CD : 0.05,

po'A = 12400,

= 500,
c = 0.5,

Tm_ = 3.5,

rnj = 0.6.

(44)

calculations are as follows:

A precise treatment of the problem above employing optimal control techniques is presented in [11].

For qmax = 0% the time histories of the optimal states and the associated dynamic pressure are given

in figures 6 - 9. For qm_ = 10, the results are shown in figures 10 - 13.

8



To apply thenumericaltechniquesintroducedin theprevioussections,wefirst chooseanintegerN

and define N + 1 (equidistantly placed) nodes

i (45)
t_=_, i=0,..,N.

Then the values of the states [ri, v_,mi] T at the nodes ti, i = 0,..,N, are obtained from solving the

constrained parameter optimization problem

min -rN (46)
[l.,, v,, ..,),=o, ,N, *J]

subject to the constraints

and

ro= 1,

VO -= O,

?Tt 0 : 1, m N = ml,

.}ri - vi = 0

_+_ - 0
,_i - i=0, N- 1,

?hi _< 0 ""

-m_- Tm_" < 0
C

t 2 qma_ < i = N.Oi - poe_(1-_) -
O, O,

Here, for all states x E {r, v, m}, the quantities _i, :_, i = O, .., N - 1 are defined by

_ = _ :_ =2 _ At

(47)

(48)

(49)

(5O)

with

at = _, (51)

and give approximate values for states and state rates in between nodes. Conditions (47) represent the

initial/final conditions (42) in the discretized form, conditions (48) replace the description (40) and (41)
of the underlying dynamical system, and conditions (49) enforce the state inequality constraint (43).

Note that in contrast to the example problem 1, the final time t I is free here and appears as an additional

parameter in (46)- (51).

A first numerical solution is generated for the simple case N = 2. Using the rough initial guesses

(to rl r2) = (1 1 1)

(vo vl v2) = (0 o 0)
(m 0 m I m2) -_ (] 0.8 0.6)

t 2 = 0.1

(52)

the nonlinear programming problem (46) - (49) converges after less than 10 iterations with the code

NPSOL [10]. Initial guesses for cases with N > 2 were generated by linearly interpolating the results

obtained with N = 2. For qmax = oo, figures 6 - 9 show the states r, v, m, and the dynamic pressure q

versus time t, respectively. Figures 10 - 13 show an active state constraint case with qmaz = 10.



Summary and Conclusions
A methodfor generatingapproximatesolutionsto optimal control problems has been introduced

in this paper. By employing the concepts of attainable sets and differential inclusions, a numerical

representation of the dynamical system is achieved that is completely devoid of controls. This leads to a

discretized problem formulation of relatively low dimensionality. The absence of fast "moving" controls

also improves the convergence properties and enhances robustness.
The new method is illustrated on a detailed treatment of a simple double integrator problem. The

performance of the algorithm is demonstrated on a 1-D rocket ascent problem ("Goddard Problem")

with and without an active dynamic pressure limit.
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Figure 10: Example 2: State r vs time t for qm:. = 10
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Figure 11: Example 2: State v vs time t for qm_ = 10
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Figure 12: Example 2: State m vs time t for qma. = 10
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